임현, 이영삼 (인하대 전기공학부)
이동로봇의 동시간 위치인식 및 지도작성(SLAM)
제어 로봇 시스템 학회지 제15권 제2호 (2009년 6월)
from kyu
> definition
mapping: 환경을 인식가능한 정보로 변환하고
localization: 이로부터 자기 위치를 추정하는 것
> issues
- uncertainty <= sensor
- data association (데이터 조합): 차원이 높은 센서 정보로부터 2-3차원 정도의 정보를 추려내어 이를 지속적으로 - 대응시키는 것
- 관찰된 특징점 자료들을 효율적으로 관리하는 방법
> localization (위치인식)
: 그 위치가 미리 알려진 랜드마크를 관찰한 정보를 토대로 자신의 위치를 추정하는 것
: 초기치 x0와 k-1시점까지의 제어 입력, 관측벡터와 사전에 위치가 알려진 랜드마크를 통하여 매 k시점마다 로봇의 위치를 추정하는 것
- 로봇의 위치추정의 불확실성은 센서의 오차로부터 기인함.
> mapping (지도작성)
: 기준점과 상대좌표로 관찰된 결과를 누적하여 로봇이 위치한 환경을 모델링하는 것
: 위치와 관측정보 그리고 제어입력으로부터 랜드마크 집합을 추정하는 것
- 지도의 부정확성은 센서의 오차로부터 기인함.
> Simultaneous Localization and Mapping (SLAM, 동시간 위치인식 및 지도작성)
: 위치한 환경 내에서 로봇의 위치를 추정하는 것
: 랜드마크 관측벡터와 초기값 그리고 적용된 모든 제어입력이 주어진 상태에서 랜드마크의 위치와 k시점에서의 로봇 상태벡터 xk의 결합확률
- 재귀적 방법 + Bayes 정리
- observation model (관측 모델) + motion model (상태 공간 모델, 로봇의 움직임 모델)
- motion model은 상태 천이가 Markov 과정임을 의미함. (현재 상태는 오직 이전 상태와 입력 벡터로서 기술되고, 랜드마크 집합과 관측에 독립임.)
- prediction (time-update) + correction (measurement-update)
- 불확실성은 로봇 주행거리계와 센서 오차로부터 유발됨.
conditional Bayes rule
http://en.wikipedia.org/wiki/Bayes%27_theorem
Markov process
total probability theorem: "law of alternatives"
http://en.wikipedia.org/wiki/Total_probability_theorem
> Extended Kalman filter (EKF, 확장 칼만 필터)
http://en.wikipedia.org/wiki/Ground_truth
'만들기 / making > senser,circuits' 카테고리의 다른 글
오디오 증폭기 회로(LM386) (0) | 2009.10.01 |
---|---|
전류의 흐름과 전자의 흐름의 관계 (0) | 2009.09.22 |
ReapRap - 3D Cheap Printer Project (1) | 2009.08.03 |
[555Timer IC] CDS로 어두워지는 하늘를 감지하는 회로를 만들어보자... (0) | 2009.07.29 |
Arduino bootloader (0) | 2009.07.15 |